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\$:>“A class of simple and robust estimators of the difference between location
parameters of correlated variables is proposed when some observations on either
of the variables are missing. We show that these estimators are consistent,
asymptotically normally distributed, and insensitive to outlying observations.
Asymptotic relative efficiency comparisons with other known estimators are made

to show the advantage of the proposed estimators.
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1. INTRODUCTIOHN

The problem of estimating the difference between means of a bivariate
normal distribution when some observations on either of the variables are
missing has received a great deal of attention in recent statistical literature
(Wilks, 1932; Anderson, 1957; Hocking and Smith, 1968; Mehta and Gurland, 1969;
Lin, 1971, 1973; Lin and Stivers, 1974). In this article we study the problem
of estimation of the difference between the location parameters of correlated
variables from fragmentary samples when the population being sampied is not
necessarily normal. More specifically, let (X, Y-6)' be a random vector with
absolutely continuous joint distribution function H which is free of & and is
symmetric in its arguments, i.e. H(u,v) = H(v,u), for (u,v)'eR2. Also, let

(Xi’Yi)" i=l,...,n be n pairs of observations on (X,Y)'; Xn+j’ J=l,eeays,

be s additional observations on X; Yp4k, k=1,...,t, be t additional

observations on Y. The (Xi’Yi)" Xn+j’ and Y. are assumed to be mutually

independent for i=l,...,n, j=l,...,s and k=1,...,t. The problem is how to use
the fragmentary sample in the most efficient way to estimate the shift parameter
8. Gupta and Rohatgi (1981) considered the case that X and Y are linearly
related and constructed regression estimators which are linear combinations of
fragmentary sample means. Therefore, their estimators are sensitive to outlying
observatijons.

A class of simple and robust estimators 8 of 6 is proposed in Section 2.
We show that these estimators are unbiased if the underlying distribution H is

symmetric about some point (u,,u,)}' or the two fragmentary sample sizes are
1°72

equal, i.e., s=t. Also, it is shown that 5 is consistent and asymptotically

normally distributed. In Section 3 we compare the asymptotic relative
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efficiency of o with other known estimators.
2. THE ESTIMATOR 6

For the fragmentary sample given in Section 1, we take all possible
differences Yj-Xi, i=l,e00,n*+s,j=1,00.,n+t, each with multiplicity «. We

also take all possible Walsh differences *s(Y;+Y;-X;-X;1), 1<ii'<n, each

with multiplicity 8. Denote the ordered set of the above M=a(n+s)(n+t)+gn(n+1)/2

differences by D(1)i°--$D(M) where o and g are nonnegative integers. A

natural estimator © of 8 is then the median of the D's, i.e.,
(%(D(2)+D(2+1)), a{n+s)(n+t)+sn{(n+l)/2=22,

6 =6(a,B) = D(g+1)» aln+s)(n+t)+n(n+l)/2=22+1.

lote that the estimator (0,1) which disregards the information from the
incomplete pairs is a Hodges-Lehmann estimator of 6 based on Wilcoxon signed
rank statistic. The estimator 5(1,0) which uses all the data points but ignores
the pairing information is based on the two-sample Mann-Whitney-Wilcoxon
statistic.

First, it is proved in the Appendix that the distribution of the difference
é(a,B)-é is free of o and the estimator é(a,s) is distributed symmetrically
about & if either of the following two conditions hold: (a) the distribution H
is symmetric about some point (up, wp)'. (b) the two fragmentary sample
sizes are equal, i.e., s=t. Thus under the stated conditions, the estimator 8
is unbiased. Now, let us consider the asymptotic performance of é.

Theorem 1. Let the distribution functions of X{ and Y;-6-X; be denoted by

F and G. The corresponding density functions f and g of F and G are assumed to




satisfy the mild conditions ff‘ Jdu<= and fg Jdu<e, respectively. Also,
let N=2n+s+t and Aj,X2,A3 De nonegative numbers such that ij+x3>0,

Ao+tA3>0 and A +Ap+2x3=1. Then, as N+ =, s/Noxy, t/N=25, n/N-x3, the

distribution of N%(G(a,e)-e) converges to a normal distribution with mean 0 and

variance oz(e) =

La? (1/124x3(1/2-fF (u)F (v)dH(u,v))1+8%a3/ (12(a 342 ) (Ag+ag )i+
aexé{l/z-zfp(u)e(v-u)dH(u,v)}/{(x3+x1)(x3+x2)}]/[a<x3+xl)%(A3+x2>*

J£2(u)du+srd g2 (u)du/{(ag+a) (A3+aq) 1]
The above theorem also shows that ) (a,B) is consistent. We note that the
computation of 6 requires finding the median of the a(n+s)(n+t)+4gn(n+l)
differences and becomes rather tedious for a large set of data. Fortunately,

there are several shortcut methods of obtaining 5 (Lehmann, 1975).
3. THE EFFICIENCY OF 6

The estimator 5 is compared with the estimator 8; (Lin and Stivers, 1974,
(2.4)), a regression estimator 82 (Gupta and Rohatgi, 1979, (9)) and a naive

n+t n+s

estimator 93=Y-X, where V= 1 Yi/(n+t) and 8= 1 Xi/(n+s). A1l the estimators
j=1 i=1

mentioned above are consistent and asymptotically normally distributed.

Let 8 and 6' be asymptotically unbiased estimators for a parameter 6 in the
sense that both N%(é-e) and N%(é'-e) have asymptotic distributions with zero
means. The asymptotic relative efficiency of 8 with respect to é', denoted by

ARE(9,8'), is defined by




where 02(6) = 1im var (N%é) and 02(6') = lim var (N%é') (c.f. Randles and

N 7w N o
Wwolfe (1979), p. 227).
Two bivariate distributions were considered for H in the comparison study:
{(a) A bivariate normal distribution with unit variance and correlation
coefficient p.
(b) A bivariate exponential distribution (Gumbel (1960)). The joint
distribution function is

o H(u,v)= F(u)F(v) [1+t{1-F(u)}{1-F(v)}],

where F(u)=1-e”Y, -1<t<1 and p=1/4.

The advantage of using Gumbel's bivariate exponential distribution for our
comparison study is that the asymptotic variance 02(5) of 8 in Theorem 1 has a
closed form. For each family of bivariate distributions mentioned above and a
group of selected values of p and t, the asymptotic relative efficiencies

ej(a,B)=ARE(;(a,B),51), i=1,2,3, were computed. Table 1 provides the

computational results for (A): A150.2, 2p=.2, 23=0.3 and (B): A1=0.05,

A»=.35, A3=.3 under the normal distribution. The estimator 6 (1,0) performs

as well as 3i(1=1:2:3) except for large values of p. The estimator 5(1,1) is
more efficient than o (1,0) for positive p. This is not surprising because
5(1,0) ignores the pairing information. However, if the ratio g/a is too large,
the efficiency of the estimator 6(&,8) becomes rather low except for extremely
large p.

Results similar to Table 1 were also found for other combinations of ij,
i=1,2,3. The choice of a=1 and 8=1 generally yields a good estimator which can

be applied for a wide range of values of p without requiring the user to specify
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or estimate the correlation coefficient p.

The estimator 3 does much better than éi, i=1,2,3, for heavy tail
distributions as is to be expected because éi(1=1,2,3) is a linear combination
of fragmentary sample means (See Table 2). In particular, if H is a bivariate
Cauchy distribution (Johnson and Kotz, 1976, p. 295) which is not shown in our

tables, the ARE (8,8;)==,i=1,2,3.
4. REMARKS

An interesting feature of 5(1,0) is that it can be used even when the
pairing of X; with Y;, i= 1,...,n, cannot be identified (c.f. Hollander,
Pledger, and Lin (1974)). For example, a statewide readiness test was given at
the beginning of the 1979-80 school year to every incoming first grade public
school student of South Carolina. The purpose of this test was to distinguish
those students who were ready for the formal first grade curriculum from those
who were not ready. A pilot testing was conducted to obtain the cutoff score
using a random sample of South Carolina's kindergarten students at the end of
the 1978-79 school year. Educators have constantly demonstrated that in the
very early years of schooling a vast amount of a student's achievement is caused
by maturation and not necessarily by instruction. This coupled with the fact
that these two tests were conducted approximately four months apart establishes
a concern as to how much the cutoff score previously determined by the pilot
test should be moved upward. So the problem becomes estimating "maturational
growth” occurred during the summer months. However, many of the students in the
pilot test cannot be identified at the data analysis time due to various human

factors. Therefore, all the parametric and regression estimation procedures

mentioned before are not valid. A similar example was also cited by Hollander,

i
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Pledger and Lin (1974).
Theorem 1 can be used to construct a test of €=6,, for any 8,. By
looking at the acceptance regions of such tests, one could—in theory—construct

a confidence interval of 8 based on the fragmentary samples.
5. APPENDIX

Proof of small sample properties of 6. The proof that the distribution of the

difference é(a,s)-e is free of 8 is straightforward. The proof of the symmetry
of the distribution of 5(a,s) about 6 is similar to that given by Lehmann, 1975,
Theorem 3, p. 86.

Two lemmas are needed to prove Theorem '. First, let us define a scoring

function ¢ for comparing two observations Xi and Yj by

1L, <Yy,

¢(X1- ’Yj)= {

0, otherwise,

and

n+s n+t ,
. wX,Y =a Z z ¢’(XT’YJ)+B ’i rt ¢(X1+X1 s Yi+Yil)'
N i=1 j=1 i=1 §'=1
Lemma 1. For any real number ¢ and integer i between 1 and a(n+s)(n+t)+

b ¥8n(n+1), the ith ordered difference D(j) if and only if
‘ Wy, y-cSa(n+s) (n+t)+ isen(n+1)-i.

[ Proof. C.f. Theorem 4 of Chapter 2, p. 87, of Lehmann, 1975.
4 Lemma 2. For 6=0 and a positive real ¢, the distribution of

((n+s)(n+t)N)'%{WX,Y_C//ﬁ ~a(n+s)(n+t)py-Bn(n+l)p,/2}

converges to a normal distribution with mean O and variance
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n8=al[1/12+2301/2-2fF (U)F (v)dH(u,v)3 6 Ag/(12(Ag%A1 ) (A3#ay)} +
aBA§ {1/2-2 fF (u)G(v-u)dH(u,v) 1/ {a3#r1 ) (A3+rp) 1,

as N> =, s/Nap, t/N"p, n/Nag, where pi= [F(utc/W)dF (u), F(.)=1-F(.)
i and po= fG(u-2c/ M)dG(u).

Proof. For convenience, Tet us define a sequence of fragmentary samples

t Xy o, Y feee, (X , ¥ Y's X yreey X s Y yeeuy
i ( 1,m l,m) NpsM? N ym nm+1,m Nt Sy oM nptl,m

Y”m+tm m, where (X; o, Yi,m+c/VN%)’ has distribution function H (i=1,...,nq,

Ny=2npts +t )y X

mFSmttm and Yj,m have distribution functions F(x) and F(y+

i,m
c/vﬁa), i=l,eee,ngt s L §=l, 000 np#t o, respectively, and s/Ny™ A, tp/Np=ags

n /N +~Xx_, as m» ». Furthermore, we assume that (X ,Y )', Xn +i.m. and
mm 3 i,m i,m m*JsMs

Y are mutually independent for i=1,..., N s j=1,...,sm, k=1,...,t, and

nm+k,m

(X) moY¥p.m) ' =(UV=c/AL)", m>1, where (U,V)' has distribution function H.

Now, let Pl,m =[F (u+c/yNp)dF (u) P2.m =JG(u-2¢c//N;)dG(u),

- Nm+sm Nm+tm

< x={npesp) (npetn) Npd ™™ Lo F y o L6(Xy Y5, m)-P1,m] *
i=1 =1

\ .
! 8 i;l -llél [¢(X1 :m+xilsm’ Y1 ’m+Yi',m]'p2’m3 and

+5 +
j - {"m" n_)’ nmz T PO . ) nmitm{F(Y )
. oot PP SRS PN LL - W R
: m (nm+tm)Nm} i 1S 1,m m 1,m (nm+tm)Nm ) ] J,m lsm
o J-
4
0
A
¢
$
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Then, it follows from the argument provided by Hollander, Pledger and Lin (1974,
n. 179) that Wy and Ty have the same limiting distribution.

The asymptotic normality of T; follows from a version of Berry-Esséén
Theorem (Chung, 1968, Theorem 7.1.2., p. 185).

1/ A~
Proof of Theorem 1. For any real c, Ps (N*(e(a,B)-0)<c)=

PQ(N%é(a,B)(C)=P0(é(a,8)<C//N)- Without loss of generality, we can assume

“hat 9=0. Consider first the case a(n+s)(n+t)+4gn{n+1)=22+1. By Lemmas 1 and 2
the fact that Jf2(u)du<e and [gZ(u)du<= (OTshen, 1967, and Mehra and

Sarangi, 1967),

(n+l)/2+1 )
2

Po(D(ge1) e/ ) =Poliy y. vy < Slits){nrt)egn

:p {;(n+s)(n+t)N}_6 {wx,y-c/yﬁ-a(n+s)(n+t)pl-6n(n+l)p2/?35

0|1
!§n+sh-2§n+t}!x BA§ N%
. {an (172 -] Fluse /R)SF )+ T (rgrngy (/2 - 6lu-2evR)de(w) }

— @[c{a(x3+x1)%(x3+xz Y2/ F2(u)du + 8232g2(u)du/((A3+ry) (AgHhp) }/ﬁ], (A-1)
as N o=, s/Noap, t/Nodse n/N>x3, where ¢ is the distribution function of
N(0,1).

In the case a(n+s)(n+t)+%8n(n+l)=22, the probability Pg(égc//ﬁ) is bounded
below and above by PO(D(2+1)59/¢N) and PO(D(2)<C/VN). By the same

argument, it can be shown that these two probabilities have the same limiting value

(A-1).
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THE ASYMPTOTIC RELATIVE EFFICIEMCY ej(a,B) X 100 UNDER
BIVARIATE NORMAL DISTRIBUTIbN

(A): x1=0.2, x2=0.2, x3=0.3
(8): A1=0.05, 1,=0.35, 13=0.3

e;(1,0) ep(1,0) e5(1,0) el(l,l) ez(l,l) e3(1,1)

89 88 94 90 94 94 9% 95 102 98 102 103

THE ASYMPTOTIC
EXPONENTIAL DISTRIBUTION

(A): 21=0.2, 2,=0.2, 13=0.3
(B): x1=0.05, A2=0.35, A3=0.3

81(1,0) ez(l,O) 93(1,0) 91(1,1) 92(1,1)

(8) (A (8) (A) (B) (A) (B) (A) (B)

286 299 293 290 290 243 240 254 246
290 304 297 292 292 248 245 259 252
293 308 300 294 294 253 251 265 257
297 312 305 297 297 258 256 271 263

300 300 316 309 300 300 263 262 277 269
303 303 320 312 303 303 269 267 284 275

OCOO0OOCOOOOO
. L] . * .
O BN OMN &YV

306 329 315 307 307 274 273 290 281
308 327 317 310 310 280 279 297 287
310 330 319 314 314 286 284 304 293

RELATIVE EFFICIENCY ej(a,8) X100 UNDER BIVARIATE
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